
Communication

Low-level USB communication

The Infinity USB Smart is a pure HID device with 64byte report packets.

EP0 IN Control/HID 64 Bytes/1ms - Status from host to device.
EP1 OUT HID 64 Bytes/2ms - Commands / data from host to device.
EP1 IN HID 64 Bytes/2ms - Commands /data from device to host.

Each 64B packet on EP1 (OUT+IN) has a header of 1 bytes specifying the total amount of bytes actually filled into the buffer.

The 64byte package will look like this: <Length><Command/Data>

Example:
To get the productname of the device, the following shows the buffers transmitted.

Host->Device : 0x01,0x02,{62bytes unused}
Device->Host: 0x10,’I’, ’n’, ‘f’, ’S’, ’m’, ’a’, ’r’, ’t’, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 , 0x00, 0x00, {47bytes unused}

Furthermore each HID report contains the report ID as the first byte in its buffer. The report ID is always 0.

Please see below for a list of commands to use.

To get started, below is a sequence of commands to set the Infinity USB Smart to communicate with a card running 3.579Mhz, at 9600baud
(Which is actually 8064 baud at 3.00Mhz)

Enable phoenix mode at 3Mhz, 8064baud
Send (hex): 49 43 3C FD17 01

Reset card (positive)
Send (hex): 52
Delay 100-200ms
Send (hex): 53

Read ATR
Send (hex): 56
Read (hex): <LL><PP><data>
LL = Length of data (ATR)
PP = Parity error (normally 0)

Write data
Send (hex): 55 <LL><data>
LL = Length of data

Read echo of written data
Send (hex): 56
Read (hex): <LL><PP><data>
LL = Length of data
PP = Parity error (normally 0)

1.0 General commands

Bytes Command
InfSmart PC

FW Description

d’00’ – h’00’ 1 0 0.xx

NOP
No operation

d’01’ – h’01’ 1 4 0.xx

Get firmware version
Returns firmware version as ASCII in the format: ”x.xx”

d’02’ – h’02’ 1 16 0.xx

Get productname
Returns productname as ASCII in the format: ”xxxxxxxxxxxxxxxx”

d’03’ – h’03’ 1 1 0.xx

Get status
Returns statusregister
Smartcardstatus (CARD):
 b’xxxxxxx0’ = no card inserted
 b’xxxxxxx1’ = card inserted

 Programmingerror (PROGERROR):
 b’xxxx000x’ = No error since last read of Get status
 b’xxxxxx1x’ = Verifyerror(s) (AVR programming)

 The PROGERROR bit gets reset after reading the statusregister.

d’04’ – h’04’ 9 0 0.xx

Set LED
Turns on, off or flashes the dual-color (R+G) LED.
Only Red and Green led available with 8bit resolution

[cRRGGBBDF]
RR = PWM dutycycle Red (0x0000 = off, 0xFF00 = on)
GG = PWM dutycycle Green (0x0000 = off, 0xFF00 = on)
BB = PWM dutycycle Blue (unused)
D = Blink duty cycle (0x00 = Mostly On, 0xFF = Mostly Off)
F = PWM frequency (0x00 = slow, 0xFF = fast)

USB not initialized (Slow blink, short red)
{0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0A, 0x80}

Idle (Fully green)
{0x00, 0x00, 0xFF, 0x00, 0x00, 0x00, 0xFF, 0xFF}

d’10’ – h’0A’ 2 0 0.xx Set LED Activity

Enables LED activity measured on RX/TX pin

[cA]
A = Activity (0x00 = Off, 0x01 = On)

Led for phoenix mode with activity:
{0x00, 0x00, 0xFF, 0x00, 0x00, 0x00, 0xA0, 0xF0}

4.0 Synchronous / I2C commands

Bytes Command
InfSmart PC

FW Description

d’50’ – h’32’ 1 0 0.xx ClockOutIICStart
Clocks out I2C start condition

d’51’ – h’33’ 1 0 0.xx ClockOutIICStop
Clocks out I2C stop condition

d’52’ – h’34’ 2 0 0.xx ClockOutIICByte
Clocks out I2C byte

[cX]

X = Byte to clockout

d’53’ – h’35’ 1 1 0.xx ClockInIICByteAck
Clocks in I2C byte with ACK

d’54’ – h’36’ 1 1 0.xx ClockInIICByteNoAck
Clocks in I2C byte without ACK

d’55’ – h’37’ 1 0 0.xx ClockIIC
Clocks one cycle on I2C clock

d’56’ – h’38’ 2 0 0.xx SyncProces s
tClocks CLK until IO changes s ate to X (0 or 1)

[cX]

X = Stop when IO changes to this state (0 or 1)

d’57’ – h’39’ 2 0 0.xx Sync_WriteOBLSB
Synchronously clocks out one byte LSB first

d’58’ – h’3A’ 1 0 0.xx Sync_Begin
Powers on and resets the card ready for clocking out ATR

d’59’ – h’3B’ 1 0 0.xx Sync_End
Powers down card

d’60’ – h’3C’ 4 0 0.xx Sync_WriteCommand
Writes command, addres and data to the card s

[cCAD]

C = Command
A = Address
D = Data

d’61’ – h’3D’ 1 0 0.xx Sync_Clock
Clocks one cycle on CLK

d’62’ – h’3E’ 2 X 0.xx Sync_Read8
Reads X number of 8bit data

[cX]
X = Numbe of byte to read r s

d’63’ – h’3F’ 3 X*2 0.xx Sync_ReadX
Reads X number of words consisting of Ybit data each. Y should be 1-
16bits of data. This returns X*2 bytes of data, as each word is 16bit.

[cXY]
X = Numbe of words to read r

s Y = Number of bit to clock into each word

d’64’ – h’40’ 2 0 0.xx Sync_WriteOBMSB
Synchronously clocks out one byte MSB first

[cX]

X = Byte to clock out

5.0 Phoenix/Smartmouse commands

Bytes Command
InfSmart PC

FW Description

d’73’ – h’49’ 6 0 0.xx Enable / Change Phoenix-mode
Sets the hardware in Phoenix mode, with the specified parameters
[cABCDE]:

A = SBCON0 (Set to 0xC3)

Bit7:SB0CLK: Baud Rate Generator Clock Source.
0: SYSCLK is used as Baud Rate Generator Clock Source.
1: USBCLK is used as Baud Rate Generator Clock Source.

Bit6:SB0RUN: Baud Rate Generator Enable.
0: Baud Rate Generator is disabled. UART0 will not function.
1: Baud Rate Generator is enabled.Bits5–2:Reserved: Read = 0000b.
Must write 0000b.

Bits1–0:SB0PS[1:0]: Baud Rate Prescaler Select.
00: Prescaler = 12
01: Prescaler = 4
10: Prescaler = 48
11: Prescaler = 1R/

B = SMOD0

Bit7:MCE0: Multiprocessor Communication Enable.
0: RI will be activated if stop bit(s) are ‘1’.
1: RI will be activated if stop bit(s) and extra bit are ‘1’ (extra bit must be
enabled using XBE0).

Bits6–5:S0PT[1:0]: Parity
00: Odd
01: Even
10: Mark
11: Space

Bit4:PE0: Parity Enable.
0: Hardware parity is disabled.
1: Hardware parity is enabled.

Bits3–2:S0DL[1:0]: Data Length.
00: 5-bit data
01: 6-bit data
10: 7-bit data
11: 8-bit data

Bit1:XBE0: Extra Bit Enable
0: Extra Bit Disabled.
1: Extra Bit Enabled.

Bit0:SBL0: Stop Bit Length
0: Short
1: Long

C = SBRLH0 (8bit MSB)
D = SBRLL0 (8bit LSB)

16bit Baudrate generator value, calculated from this formula:

SBRL = (65536 – (48000000/baudrate)*0.5)

A typical card running 9600baud at 3.579Mhz should run at 8064baud,
at 3.00Mhz (or 16129baud at 6.00Mhz)

E = 0 = Sysclock = 24MHz (Card frequency = 6.00Mhz)
E = 1 = Sysclock = 12MHz (Card frequency = 3.00Mhz)

Selects the clock for the card

Example:
49 C3 3C F45F 00 = 8064 8E1 (Actual 9600baud)
49 C3 3D F45F 00 = 8064 8E2 (Actual 9600baud)

d’74’ – h’4A’ 1 0 0.xx Disable Phoenix-mode
d’76’ – h’4C’ 6 0 0.xx Set UART (Same as command 0x49, but only changes baudrate)
d’82’ – h’52’ 1 0 0.xx Set RTS

Sets CReset low (ca d in resetr)
 d’83’ – h’53’ 1 0 0.xx Clear RTS

Sets CReset high (ca d out of reset r)
 d’84’ – h’54’ 3 0 0.xx Trap

Toggles CReset, waits X*10 [cXx] microseconds (0-2550us) and sends
one byte to the card [cxX].

d’91’ – h’5B’ 3 0 0.xx TrapBreak
Sets I/O pins low (break), toggles CReset, waits X*10 [cXx] milliseconds
(0-2550ms) and sends one byte to the card [cxX].

d’85’ – h’55’ 1+ 1 0.xx TXByte
Sends (0-255) bytes to the card. The number of bytes to send [cXxx...] are
followed by the actual data.

 d’86’ – h’56’ 1 2+ 0.xx RXByte
Receives the current buffer of data (0-255 bytes) from the card. The
number of byte are returned as one byte, then following 1 byte that
indicates the number of parityerrors (returns 0 if none), and then the
actual da a (0-255 byte

s

t s)

